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Abstract--Laminar steady buoyancy-driven flow around two interacting isothermal cubes in an infinite 
medium is investigated by employing a control-volume finite difference technique and holographic inter- 
ferometry. The two cubes are positioned along the diagonal direction. Parametric investigations are 
performed[ by varying the center-to-center cube spacing and by varying the Rayleigh number while the 
Prandtl number is kept constant. To validate the numerical solutions, the calculated isothermal contours 
are qualitatively compared with the isophase lines in pathlength-integrated holographic interferograms. 
The heat transfer results are presented in terms of the average Nusselt number and the face-average Nusselt 

numbers at individual walls of each cube. 

INTRODUCTION 

The study of n~Ltural convection around solid ob- 
jects can be of l~xeat importance in many engineer- 
ing applications. Especially for interacting bodies, the 
interest in obtaining their quantitative information 
has increased considerably, mainly due to the 
advances in solar heating technology, nuclear reactor 
safety, and waste disposal. The demands for cooling 
of electronic components and environmental thermal 
transport in large buildings have also increased its 
importance for better understanding of natural con- 
vection in interacting flow fields. There exists an abun- 
dance of examples for two-dimensional heat transfer, 
either experimental [1, 2] or numerical [3, 4] : however, 
it appears that Lhe previously published results for 
interacting three-dimensional (3D) external natural 
convection flows are very scant. Even for single 3D 
objects, only a few works have been reported. Some 
typical examples are those by Sparrow and Ansari [5], 
Churchill [6], and Cha and Cha [7] for a short cylinder, 
a sphere and a cube, respectively. Sparrow and Stret- 
ton [8] experimentally studied natural convection 
from cubes oriented in various directions and for- 
mulated means for correlating the heat transfer 
phenomena of some typical three-dimensional bodies. 
Tolpadi and Kuehn [9] reported a numerical study 
based on a vorticity and vector potential approach 
for the heat transfer from a horizontal cylinder with 
transverse circular fins. An additional example can 
be that of Worthington et al. [10], which presented 
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electrochemical mass transfer and observed flow pat- 
terns by using Schlieren photography for a variety of 
cuboid geometries. 

As a continuation of a previous work [7], we present 
here the numerical and experimental investigation 
results of 3D natural convection flows around two 
interacting isothermal cubes. We believe that this 
study can provide valuable knowledge for the afore- 
mentioned engineering applications. 

MATHEMATICAL AND NUMERICAL 
FORMULATION 

The geometrical configuration of the natural con- 
vection problem under investigation is depicted in Fig. 
1. As shown in the figure, two smooth cubes of con- 
stant temperature Tw are immersed in an ambient 
fluid of temperature To~ to produce a buoyancy-driven 
flow. The two cubes are positioned along the 45 ° diag- 
onal direction. The domain of computation consisted 
of three outer solid walls, an inner symmetry plane, an 
inflow boundary plane at the bottom, and an outflow 
boundary plane at the top, respectively. Since the flow 
is symmetric with respect to the y - z  plane, only a half 
of the flow domain needs to be considered. A region 
of recirculation might be formed in the flow field. 
Consequently, all the terms in the governing equations 
were retained in order to keep the equations in an 
elliptic form. In computation, the Rayleigh number 
was varied from 1.3 × 103 to 1.0 × 105 for a fixed 
Prandtl number of 8940 that corresponds to the value 
of glycerin at a mean temperature of 25°C. The flow 
was thus expected to be in a laminar flow regime. 
Additionally, the 3D flow was assumed to be steady 
and incompressible with constant properties except 
density. Only gravity was considered as an external 
force. 
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NOMENCLATURE 

A area 
g acceleration due to gravity 
H center-to-center cube spacing 
L, M, N numbers of grid division in x, y and 

z-directions 
n normal direction to a cube surface 
Nu local Nusselt number 
Nu average Nusselt number based on 

S 
Nuf face-_average Nusselt number similar 

to Nu 
p dimensionless pressure 
Pr Prandtl number, v/ct 
R residual of the continuity equation 

defined in ref. [11] 
Ra Rayleigh number based on S, 

figS 3 (Tw -- To~)/(~v) 
S side length of a cube 
T fluid temperature 
u, v, w dimensionless velocity components 

in the x, y and z-directions 
x, y, z dimensionless coordinates 

XL, YL, ZL  dimensions of the 
computational domain in the x, y and 
z-directions. 

Greek symbols 
a thermal diffusivity 
fl volumetric coefficient of thermal 

expansion 
6x, 6y, 5z minimum grid spacings in x, y and 

z-directions 
0 dimensionless temperature 
v kinematic viscosity 
p density 
~b dependent scalar variable. 

Subscripts 
w wall 
oe ambient fluid. 

Superscripts 
' dimensional quantity. 

The governing equations based on the afore- 
mentioned assumptions and associated boundary con- 
ditions were then nondimensionalized. The dimen- 
sionless governing equations thus formed with 
appropriate dimensionless variables are shown below. 

x = x' /S y =  y ' /S z = z' /S 

p = p' t(p(alS)  2) u = u't(~/s) 

v = v' l(~/s) w = w't(~/s)  

0 = (T-- T~)/(Tw-- T~). (1) 

Continuity equation : 

du Ov Ow 
8~ + ~y + -~z = O. (2) 

x-momentum equation : 

Ou Ou Ou /02u d2u O:u~ Op 
U~x +V~y +W~z = Pr~xZ  + Oy--~ + ~zZ I Ox" 

(3) 
y-momentum equation : 

aV + v ~  +W~zaV= la~v __°~v O~v~ U~x Pr~xZ "q- dy 2 -~- 07,2,] 

Op 
-- dy +RaPrO" (4)  

z-momentum equation : 

8w dw Ow [O2w dZw dZw'~ ap 

(5) 

Energy equation : 

O0 00 00 020 020 820 
U~x +V~yy +W~z z = 0x--- )- + ~ + O-~" (6) 

The Rayleigh number was defined by R a =  
fl#S3(Tw-T~)/(av) as usual. The dimensionless 
boundary conditions associated with the governing 
equations are as follows. 

Cubic source walls : 

u = 0  v = 0  w = 0  0 = 1 .  (7) 

Outer solid walls : 

u = 0  v = 0  w = 0  0 = 0 .  (8) 

y -z  symmetry plane : 

Ov &w &O 
u = 0  ~ x = 0  ~ x = 0  ~ x = 0 .  (9) 

Inflow boundary plane : 

Ov u=0 ~ = 0  w=0 0 = 0 .  (10) 

Outflow boundary plane : 

Ov 80 
u - - 0  ~ y = 0  w = 0  ~ y = 0 .  (11) 

The governing equations and associated boundary 
conditions were discretized by a control-volume finite 
difference method. The SIMPLE algorithm [1 l] was 
employed. The convective and diffusive fluxes were 
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Fig. 1. Configuration of the natural convection field of inves- 
tigation : (a) top view ; (b) front view. 

approximated by using the power law scheme [11, 
12]. Some values required at the internal grid points 
located in the domain corresponding to two cubes, 
that is, u = 0, v = 0, w = 0 and 0 = 1, were maintained 
by manipulating the finite difference equations such 
that the source terms dominate all other terms [11]. 
The discretization equations were solved using a tri- 
diagonal matrix algorithm (TDMA) with a line-by- 
line method. Initially, the TDMA was applied to the 
grid lines in the x-direction, then by sweeping them 
along the y-and z-directions, respectively. Next, it was 
applied in the y-direction with the sweeping sequence 
of the z- and x-directions, respectively. Finally, it was 
applied in the z-direction in a similar manner. The 
direction of iteration was alternated such that the 
solution proceeded from one end to the other and vice 
versa. Underrelaxation [11] was employed to avoid 
divergence in the iterative solutions of these strongly 
nonlinear equations. The values of relaxation factors 
for the momentum and energy equations were varied 
from 0.1 to 0.4 and from 0.4 to 0.8, respectively. The 
convergence in the kth iteration tested with the fol- 
lowing two criteria : 

~k-l] 
1 - -  - -  < e t  ( 1 2 )  

[IRI]avg < ~2. (13) 

where the symbols of 4, and R denote the dependent 
scalar variable and residual defined in ref. [11]. The 
symbols of el and e2 are prescribed errors that were 
2 x 10 -4  and 1 x 10 -5, respectively, for the most of  the 
runs in the current study. 

Initially, rectangular pseudo outer boundaries on 
which flux boundary conditions could be applied, 
which might be better suited for this study, had been 
considered instead of the three outer solid walls. How- 
ever, extensive numerical experiments showed that a 
rectangular pseudo boundary can cause premature 
instability [4] in computation, hindering the cal- 
culation of  high Rayleigh number flows. Thus, the 
outer solid walls were assumed instead by choosing a 
domain that was determined such that further increase 
of  its size would not affect much the numerical solu- 
tion near the two cubes. This could be done by choos- 
ing the distances from five outermost faces of the two 
cubes to the corresponding facing walls of the domain 
to be approximately twice larger than the maximum 
thickness of the thermal boundary layers around a 
single cube. For  validation, the boundary layer thick- 
nesses around a single cube were found at several 
different Rayleigh numbers for sufficiently large flow 
domains with coarse nonuniform grids. Then, the 
approach for sizing the computational flow domain 
was applied to a single cube problem and the result 
was compared with that from holographic flow vis- 
ualization [7]. This approach appears to be satis- 
factory. A nonuniform grid was used in all the x-, y- 
and z-directions. The neighborhood of the two cubes 
was more densely populated by grid-lines. Grid spac- 
ings, fix, 3y and 6z, were optimized by a trial-and- 
error procedure, but there were at least 10 nodes in a 
thermal boundary layer. More detailed discussions on 
both the computational domain size and grid spacing 
can be found in ref. [7]. 

The heat transfer around a cube can be presented 
in terms of the local Nusselt number, the face-average 
Nusselt number [13], and the average Nusselt number. 
The local Nusselt number at a cube surface is defined 
by 

~ 0  
Nu = - ~nn (14) 

where n is the direction normal to the cube surface. 
The local temperature gradient in Equation (14) was 
evaluated by using a three-point Taylor series expan- 
sion. The face-average Nusselt number Nuf and the 
average Nusselt number Nu for a cube were deter- 
mined by equations (15) and (16), respectively. 

00 
Nuf = -- dAw (15) 
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Table 1. Input and output parameters for nonuniform grid calculation 

Ra H/x/~ t~x × by × fiz XL × YL x ZL L x M × N No. of nodes 

1.3 x 103 1.00 0.05 × 0.05 x 0.05 1.7 × 4.5 x 4.4 25 × 57 × 58 82650 
1.3× 103 1.25 0.05×0.05×0.05 1.7 x4.8 ×4.7 20×52×53 55120 
1.3 × 103 1.50 0.05 × 0.05 × 0.05 1.7 x 5.0 × 4.9 20 x 57 x 58 66120 
1.3x 103 1.75 0.05 × 0.05 x 0.05 1.7 x 5.3 × 5.2 20×62x63 78120 
1.3×103 2.00 0.05 × 0.05 × 0.05 1.7 × 5.5 x 5.4 20×63×64 80640 
1.0 × 104 1.25 0.03 × 0.03 x 0.03 1.3 x 4.8 x 4.7 20 × 67 × 58 71920 
1.0 × 105 1.25 0.02 × 0.02 × 0.02 1.0 × 4.3 x 3.3 19 x 70 × 60 79800 

- -  1 6 

Nu = ~ )-" [Nur]j (16) 
j = l  

where j denotes each surface of the cube. Here, only 
the face-average Nusselt number and the average Nus- 
selt number are presented. However, all other involved 
quantities including the local Nusselt number were 
also calculated in the process of computation. 

RESULTS AND DISCUSSION 

The computer code used in this study had been 
verified by solving a three-dimensional natural con- 
vection flow around an isothermal cube [7]. Two para- 
metric studies were performed by varying the center- 
to-center cube spacing H as shown in Fig. 1 and by 
varying the Rayleigh number. The geometry for a 
Rayleigh number of 1.3 x 103 was as follows. Initially, 
one cube was positioned at the other cube's upper 
right-hand corner: in other words, they were con- 
tacting each other along an edge and thus H/v~2 was 
unity. The center of the upper cube was then moved 
along a 45 ° diagonal line. For other values of the 
Rayleigh number, only a fixed position was inves- 
tigated. Typical parametric values employed for all 
the cases investigated are listed in Table 1. Figure 2 
shows the holographic interferograms of the thermal 
plume from two isothermal cubes, captured at a spec- 
ific projection angle perpendicular to the symmetry 
plane, at a Rayleigh number of 1.3 x 103 and H / x / ~  
of 1.25. The details of the experiment are described 
in ref. [14]. Since the supporting bars of the cubes 
disturbed the adjacent flow field, two configurations 
were chosen, as shown in the figure, to produce a 
composite interferogram: one with the supporting 
bars on the right-hand side (RHS) and the other with 
them on the left-hand side (LHS), respectively. The 
complete projection interferogram was then obtained 
by combining those halves without the bars present. 
The interacting flow field of the two cubes can be 
clearly seen in Fig. 2. It was also found that the ther- 
mal boundary layers near the outermost faces of the 
cubes are thinner than the side length S of a cube. 
This holographic flow visualization could confirm that 
the computational domains determined according to 
the scheme explained before are sufficient not to affect 
the solutions near the two cubes. 

Due to the similarity of the numerical solutions of 

all the cases involved, details of the results whose 
input parameters correspond to the flow visualization 
experiment shown in Fig. 2, that is, the case with 
Ra of 1.3 × 103 and H / x / ~  of 1.25, are only to be 
discussed. The isothermal contours and velocity vec- 
tors of this case are plotted in Fig. 3 for the vertical 
symmetric cross-section. Similar plots for velocity and 
temperature at a typical horizontal cross-section are 
also plotted in Fig. 4, however, showing only hori- 
zontal components for velocity. The shaded square 
areas in Figs. 3 and 4 represent both cubes and the 
upper one, respectively. Since the isothermal contour 
plots require interpolation of the data, i.e. B-cubic 
splines, the edges of the shaded areas were occasion- 
ally inconsistent with the nearest isothermal contour. 
However, this deficiency of the contour plots did not 
affect the evaluation of the local temperature gradients 
in equations (14)-(16), since only the original numeri- 
cal results were used for this purpose. The isothermal 
contours in Fig. 3(a) were qualitatively compared with 
the interferometric fringes on the holographic inter- 
ferograms in Fig. 2. The interferometric fringes 
approximately correspond to isophase lines, that is, 
equivalent contours of integrated optical pathlengths, 
of the three-dimensional flow field. As seen, the right 
half of Fig. 2(a) and the left half of Fig. 2(b) are in 
good agreement with their counterparts of Fig. 3 (a). 
The temperature disturbance at the center symmetry 
plane is the dominating factor in integrating optical 
pathlengths, as evidenced in a previous investigation 
[7]. Consequently, even though the comparison is not 
direct, it can provide reasonable cross-comparison. A 
thorough quantitative comparison based on exper- 
imental tomographic reconstruction of the 3D field 
will follow in the future. As seen from both velocity 
vector plots in Figs. 3(b) and 4(b), rather strong flow 
entrainment from the surrounding toward the cubes 
was observed: however, no separation was observed 
at any corner of the cubes for the range of the Rayleigh 
numbers investigated. It was also observed that as 
the Rayleigh number increases, the thickness of the 
thermal boundary layer decreases. 

Based on the argument that was presented in the 
previous study [7], it appears that the 3D numerical 
code works well and its numerical solutions are 
reliable. The average Nusselt numbers of both the 
upper and the lower cubes for Ra of 1.3 x t03 were 
calculated as a function of the center-to-center cube 
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Fig. 2. Ho~[ographic interferograms of the thermal plume around two interacting cubes, projected normal 
to the symmetry plane : support legs at (a) RHS and (b) LHS. 
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Fig. 3. Flow fields in the vertical symmetry plane for Ra = 1.3 x 103 and H/w/'2 = 1,25 : (a) isothermal 
contours ; (b) velocity vectors. 
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Fig. 4. Flaw fields in the horizontal plane at a normalized distance of 0.05 from the upper cube bottom for 
Ra = 1.3 x 1 0  3 and H/~v/~ = 1.25: (a) isothermal contours; (b) horizontal velocity components. 

spacing, and compared with that of a single cube [7]. 
Figure 5 shows tlaese average values. When both cubes 
are in contact, the average Nusselt numbers of both 
of the cubes are :minimum. The average Nusselt num- 
bers of the lower cube are always larger than those of 
the upper cube but smaller than that of the single 
cube. For  the range of the tested H-values as shown 
in Fig. 5, there still exists the effect of interacting 
thermal plumes:, even though the average Nusselt 
numbers of both of  the cubes gradually approach the 
single-cube value. However, it is believed that a sub- 
stantial center-to-center cube spacing is required to 
reach the asymptotic single-cube value since the 
change beyond the maximum tested H-value is very 
gradual. 

The face-average Nusselt numbers at the five 
different walls of each cube, that is, top, bottom, left, 
right, and back, were also calculated. The value at a 
front wall is the same as that at the corresponding 
back wall. Figures 6(a) and (b) show these five face- 
average Nusselt numbers of both the upper and the 
lower cube, respectively. The values for a single cube 
are also shown in Fig. 6 for cross-examination. That 
is, the face-average Nusselt numbers at the left, right, 
and back walls of both of the cubes can be compared 
with that at a vertical wall of the single cube and those 

at the top and bottom walls of the cubes directly with 
the corresponding values. As expected from the results 
of the average Nusselt numbers shown in Fig. 5, the 
face-average Nusselt numbers of the lower cube are 
in general larger than those of the upper cube. The 
face-average Nusselt numbers at the bottom, top, 
back, and left walls of the lower cube and at the 
bottom, back, and right walls of the upper cube are 
not affected much by the interaction of the flow fields 
as the center-to-center cube spacing varies except 
when H/x/~ approaches the value of unity. Among 
these, for the changes near H/x/~ = 1, the bottom and 
top walls of the lower cube exhibit some significance 
while the bottom wall of the upper cube has greater 
variation. 

The face-average Nusselt numbers at the right wall 
of the lower cube and at the left and the top wall of 
the upper cube change rather gradually over the cube 
spacing investigated. However, the former two show 
significant variation and they even exceed those cor- 
responding single cube values as H/w~2 becomes 
greater than about 1.5. The values at the bottom wall 
of the lower cube initially exceed the single cube 
counterpart but drop below as the cube spacing 
increases. All other face-average Nusselt numbers for 
the double cubes except for the aforementioned three 
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Fig. 5. Average Nusselt numbers of two interacting cubes for R a  = 1.3 x 103 as a function of the center-to- 
center cube spacing. 

are lower than the corresponding values for the single 
cube. It is believed that the asymptotic trend of the 
face-average Nusselt numbers, as previously discussed 
for the average Nusselt numbers, would also have 
been shown if the spacing had been extended further. 
The average Nusselt numbers of both the upper and 
lower cubes were calculated for the center-to-center 
cube spacing at H / x / ~  = 1.25 as a function of the 
Rayleigh number and compared with those of the 
single cube as shown in Fig. 7. Similar to the results 
shown in Fig. 5, the average Nusselt numbers of the 
lower cube are larger than those of the upper cube but 
smaller than that of the single cube for the range of 
Rayleigh numbers investigated. 

CONCLUSION 

A 3D natural convection problem has been 
discussed, which can be produced around two inter- 

acting isothermal cubes in an infinite medium, at a 
high Prandtl number. Numerical solutions were 
obtained for a wide range of both Rayleigh numbers 
and the center-to-center cube spacings. In order to 
validate the numerical method, the calculated iso- 
thermal contours were qualitatively compared with 
the isophase lines in holographic interferograms. 
These comparisons were reasonably in good agree- 
ment. The heat transfer results were presented in terms 
of the average Nusselt number and the face-average 
Nusselt numbers at the top, bottom, left, right and 
back walls of the two cubes. This study may provide 
some valuable information for better understanding 
the 3D natural convection of interacting plume flow 
fields. 
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